磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。
1、基本原理
磷化过程包括化学与电化学反应。不同磷化体系、不同其材的磷化反应机理比较复杂。虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:
8Fe+5Me(H2PO4)2+8H2O+H3PO4 Me2Fe(PO4)2·4H2O(膜)+Me3(PO4)·4H2O(膜)+7FeHPO4(沉渣)+8H2↑
Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。这个机理解释比较粗糙,不能完整地解释成膜过程。随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:
①.酸的浸蚀使基体金属表面H+浓度降低
Fe – 2e→ Fe2+
2H2-+2e→2[H] (1)
H2
②.促进剂(氧化剂)加速
[O]+[H] → [R]+H2O
Fe2++[O] → Fe3++[R]
式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。同时也将溶液中的Fe2+氧化成为Fe3+。
③.磷酸根的多级离解
H3PO4 H2PO4-+H+ HPO42-+2H+ PO43-+3H-(3)
由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。
④.磷酸盐沉淀结晶成为磷化膜
当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数K sp时,就会形成磷酸盐沉淀
Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2·4H2O↓(4)
3Zn2++2PO43-+4H2O=Zn3(PO4)2·4H2O↓(5)
磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。
磷酸盐沉淀的副反应将形成磷化沉渣
Fe3++PO43-=FePO4(6)
以上机理不仅可解释锌系、锰系、锌钙系磷化成膜过程,还可指导磷化配方与磷化工艺的设计。从以上机理可以看出:适当的氧化剂可提高反应(2)的速度;较低的H+浓度可使磷酸根离解反应(3)的离解平衡更易向右移动离解出PO43-;金属表面如存在活性点面结合时,可使沉淀反应(4)(5)不需太大的过饱和即可形成磷酸盐沉淀晶核;磷化沉渣的产生取决于反应(1)与反应(2),溶液H+浓度高,促进剂强均使沉渣增多。相应,在实际磷化配方与工艺实施中表面为:适当较强的促进剂(氧化剂);较高的酸比(相对较低的游离酸,即H+浓度);使金属表面调整到具备活性点均能提高磷化反应速度,能在较低温度下快速成膜。因此在低温快速磷化配方设计时一般遵循上述机理,选择强促进剂、高酸比、表面调整工序等。
关于磷化沉渣。因为磷化沉渣主要是FePO4,要相减少沉渣量就必须降低Fe3+的产生量,即通过两个方法:降低磷化液的H+浓度(低游离酸度)减少Fe2+氧化成为Fe3+。
锌材与铝材磷化机理基本与上相同。锌材的磷化速度较快,磷化膜只有磷酸锌盐单一组成,并且沉渣很少。铝材磷化一般要加入较多的氟化合物,使之形成AlF3、 AlF63-,铝材磷化步聚与上述机理基本相同。
磷化的分类方法很多,但一般是按磷化成膜体系、磷化膜厚度、磷化使用温度、促进剂类型进行分类。
2.1 按磷化膜体系分类
按磷化成膜体系主要分为:锌系、锌钙系、锌锰系、锰系、铁系、非晶相铁系六大类。
锌系磷化槽液主体成他是:Zn2+、H2PO3-、NO3-、H3PO4、促进剂等。形成的磷化膜主体组成(钢铁件):Zn3(po4)2·4H2O 、Zn2Fe(PO4)2·4H2O。磷化晶粒呈树枝状、针状、孔隙较多。广泛应用于涂漆前打底、防腐蚀和冷加工减摩润滑。
锌钙系磷化槽液主体成分是:Zn2+、Ca2+、NO3-、H2PO4-、H3PO4以及其它添加物等。形成磷化膜的主体组成(钢铁件):Zn2Ca(PO4)2·4H2O、Zn2Fe(PO4)2·4H2O、Zn3(PO4)2·4H2O。磷化晶粒呈紧密颗粒状(有时有大的针状晶粒),孔隙较少。应用于涂装前打底及防腐蚀。
锌锰系磷化槽液主体组成:Zn2+、Mn2+、NO3-、H2PO4-、H3PO4以及其它一些添加物。磷化膜主体组成:Zn2Fe(PO4)2·4H2O、Zn3(PO4)2·4H2O、(Mn,Fe)5H2(PO4)4·4H2O,磷化晶粒呈颗粒-针状-树枝状混合晶型,孔隙较少。广泛用于漆前打底、防腐蚀及冷加工减摩润滑。
锰系磷化槽液主体组成:Mn2+、NO3-、H2PO4、H3PO4以及其它一些添加物。在钢铁件上形成磷化膜主体组成:(Mn,Fe)5H2(PO4)4·4H2O。磷化膜厚度大、孔隙少,磷化晶粒呈密集颗状。广泛应用于防腐蚀及冷加工减摩润滑。
铁系磷化槽液主体组成:Fe2+、H2PO4、H3PO4以及其它一些添加物。磷化膜主体组成(钢铁工件):Fe5H2(PO4)4·4H2O,磷化膜厚度大,磷化温度高,处理时间长,膜孔隙较多,磷化晶粒呈颗粒状。应用于防腐蚀以及冷加工减摩润滑。
非晶相铁系磷化槽液主体成分:Na+(NH4+)、H2PO4、H3PO4、MoO4-(ClO3-、NO3-)以及其它一些添加物。磷化膜主体组成(钢铁件):Fe3(PO4)2·8H2O, Fe2O3,磷化膜薄,微观膜结构呈非晶相的平面分布状,仅应用于涂漆前打底。
2.2 按磷化膜的厚度分类
按磷化膜厚度(磷化膜重)分,可分为次轻量级、轻量级、次重量级、重量级四种。次轻量级膜重仅0.1~1.0g/m2,一般是非晶相铁系磷化膜,仅用于漆前打底,特别是变形大工件的涂漆前打底效果很好。轻量级膜重1.1~4.5 g/m2,广泛应用于漆前打底,在防腐蚀和冷加工行业应用较少。次重量级磷化膜厚4.6~7.5 g/m2,由于膜重较大,膜较厚(一般>3μm),较少作为漆前打底(仅作为基本不变形的钢铁件漆前打底),可用于防腐蚀及冷加工减摩滑润。重量级膜重大于7.5 g/m2,不作为漆前打底用,广泛用于防腐蚀及冷加工。
2.3 按磷化处理温度划分
按处理温度可分为常温、低温、中温、高温四类。常温磷化就是不加温磷化。低温磷化一般处理温度30~45℃。中温磷化一般60~70℃。高温磷化一般大于80℃。温度划分法本身并不严格,有时还有亚中温、亚高温之法,随各人的意愿而定,但一般还是遵循上述划分法。
2.4 按促进剂类型分类
由于磷化促进剂主要只有那么几种,按促进剂的类型分有利于槽液的了解。根据促进剂类型大体可决定磷化处理温度,如NO3-促进剂主要就是中温磷化。促进剂主要分为:硝酸盐型、亚硝酸盐型、氯酸盐型、有机氮化物型、钼酸盐型等主要类型。每一个促进剂类型又可与其它促进剂配套使用,有不少的分支系列。硝酸盐型包括:NO3-型,NO3-/NO2-(自生型)。氯酸盐型包括:ClO3-,ClO3-/ NO3-,ClO3-/ NO2-。亚硝酸盐包括:硝基胍R- NO2-/ ClO3-。钼酸盐型包括:MoO4-, MoO4-/ ClO3-, MoO4-/ NO3-。磷化分类方法还有很多,如按材质可分为钢铁件、铝件、锌件以及混合件磷化等。